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This paper introduces a new structural identi"cation method for use in non-stationary
conditions, which applies to structures and systems in normal serviceability conditions,
under unknown excitation. The proposed method uses auto- and cross-time}frequency
transforms of accelerometer signals recorded from the structure to identify the vibration
modes. The transforms considered are those in Cohen's class which, in addition to
possessing valuable properties for the analysis of mechanical signals, lend themselves to
a clear interpretation in energy terms. This method enables modal parameters to be reliably
estimated and an earlier technique proposed by the authors which was based on modal
"lters to be improved. It is further shown that the cross-correlation-based estimators are
more e!ective than techniques based on auto-transformations, due to their noise-"ltering
properties. Finally, a method to re"ne the estimate of modal shapes, which avoids
autocorrelation, is proposed. The accuracy of the procedure was assessed by means of
numerical simulations.
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1. INTRODUCTION

The monitoring of systems in normal service conditions is of paramount importance in
a variety of "elds where fault or damage detection is an issue. In some sectors, including civil
structures, the use of techniques that exploit environmental excitation may avoid problems
such as obstruction of road bridges or breaks in production processes. The use of
environmental input gives rise to the need for analyzing non-stationary response signals,
generally from accelerometers, which constitute the typical output of the systems
monitored. When bi-linear transforms from Cohen's class are used, the system response is
perceived in the time}frequency plane as the evolution of spectral components
corresponding to the energy of the individual vibration modes [1}3]. The aim of this work
is to show that auto- and cross-time}frequency based techniques can be used e!ectively in
system identi"cation in non-stationary conditions, under unknown excitation, and can
0022-460X/00/450775#17 $35.00/0 ( 2000 Academic Press
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replace traditional techniques. In other words, the proposed method does not require strict
conditions about stationarity, but its performance is tied to modal component separability
in the time}frequency plane. The technique is based on the assumption that the input of
the system spans the frequency range of the vibration modes. The broader the spectrum of
the input, the more accurate the identi"cation.

A procedure proposed previously [4}7] involved the use of "lters in the time domain
to separate the modal components, and special frequency alignment algorithms for
the determination of phase di!erences between signals. In fact, it is necessary for
the determination of the modal shape relating to each individual vibration mode to estimate
the amplitude as well as the phase relationship between signals.

With the method proposed here, the estimation of amplitude and phase information is
based directly on the analysis of the auto- and cross-time}frequency transforms of the
signals. This simpli"es the procedure and does away with a critical step of the previous
approach, i.e., the design of band-pass "lters and their application in the time domain. In
particular, amplitude ratios are determined directly from the ratio between the
instantaneous amplitudes of the time}frequency representations of the signals. Phase
relationships are estimated based on the phase of the cross-time-frequency representation of
pairs of channels [8, 9].

Since the estimators provided by this new method are derived directly from
two-dimensional functions of the time and frequency variables, they retain their dependence
on time variables. Therefore they make it possible to determine the time evolution of the
modal shape associated with a given frequency component and hence to establish
a posteriori, i.e., at the end of the process, whether a given frequency value may or may not
be a structural vibration mode. In linear time-invariant systems, modal signals are
characterized by the fact that amplitude and phase relationships are constant and therefore
the modal shape to which they give rise is characterized by stability over time.

Numerical examples are presented in section 6 of the paper, showing how the proposed
procedure was used to identify a three-degrees-of-freedom (d.o.f.s) model (of a shear-type
frame).

2. COHEN CLASS AUTO- AND CROSS-TRANSFORMS

Time}frequency transforms are spectral analysis tools designed to study the harmonic
content of signals as a function of time [1]. All the transforms belonging to the Cohen class
can be written in the form:

D
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q
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q
2Bg (h, q) e!j2nh(t@!t) e!j2nfq dhdt@dq, (1)

where D
x
(t, f ) is the time}frequency distribution, x(t) is the input signal, x* (t) is its complex

conjugate, t is the time, f is the frequency, q is the time lag, h is the frequency lag, and g (h, q)
is the kernel of the transform. From equation (1) it can be seen that the time-frequency
transform is computed by applying a kernel to the instantaneous autocorrelation function,
which is de"ned as
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TABLE 1

Properties of the time}frequency distributions belonging to the Cohen class and associated
conditions on the kernel of the transform

Property Conditions on the Kernel

P1 Time and frequency shift g (h, q) independent of t and f
P2 Time marginal g (h, 0)"1∀h
P3 Frequency marginal g (0, q)"1 ∀q

P4 Instantaneous frequency
Lg (h, q)

Lq Kq"0"0 ∀h

P5 Group delay
Lg (h, q)

Lh Kh"0

"0 ∀q

P6 Attenuation of interfering terms g (h, q) attenuates terms apart from the axes in
the ambiguity domain

TIME}FREQUENCY STRUCTURAL IDENTIFICATION 777
The generalized instantaneous autocorrelation function (i.e., equation (2) after the kernel
application) is Fourier-transformed, thus obtaining the time-frequency representation of the
input signal. The kernel characteristics are strictly associated with distribution properties,
and hence it is possible to ensure that the transform will possess a number of speci"c
properties by selecting kernels that hold certain characteristics. Table 1 summarizes some
properties that are particularly relevant to the identi"cation of structures [1].

Cohen's class groups together all bi-linear transforms that are invariant to time and
frequency shifts (P1). This property is relevant to the technique proposed in this paper since
it makes it possible to locate correctly, in the time}frequency domain, a harmonic
component present in the signal. If this property does not hold, modal waveforms at
di!erent frequencies which occur at di!erent points in time will be represented di!erently
thus leading to possible errors in the modal identi"cation procedure.

Another essential property is the so-called marginal property (P2 and P3). By choosing
a kernel which is unitary over the axes of the ambiguity domain (i.e. the domain de"ned by
time and frequency lags), it is possible to ensure that the representation obtained in the
time}frequency plane will retain the energy properties of the signal. Speci"cally, by
integrating the distribution along the time axis, the spectral density of energy is obtained.
Through integration along the frequency axis the instantaneous energy is obtained. These
properties are relevant to the identi"cation of structures since both the amplitudes of the
modal vibrations and their frequencies are computed to derive the modal shapes. If the
time}frequency distribution does not satisfy the marginals, it is expected that the estimated
modal frequencies and amplitudes may be a!ected by a signi"cant estimation error.

Properties P4 and P5 (i.e., instantaneous frequency and group delay) are desirable
properties for the identi"cation of the modal frequencies and for the estimation of the phase
relationships among the signals recorded from the structure investigated.

Finally, because of the bi-linearity of the time}frequency transformation the distribution
of multi-component signals is a!ected by spurious terms [1] often indicated as interference
terms. These terms are due to the cross-products among the signal components and they are
usually located away from the origin of the ambiguity plane. Their presence in the
time}frequency domain may make the interpretation of the distribution di$cult and
compromise the reliability of the technique proposed here. However, the kernel of the
transform can attenuate them signi"cantly if it is properly designed. For the application
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that is investigated in this paper, the kernel needs to be chosen so that it attenuates terms
away from the axes of the ambiguity domain (P6).

Among all the transforms belonging to the Cohen class, the simplest one is the
Wigner}Ville transform. This transform is characterized by a unitary kernel over the entire
(h, q) plane. It can be demonstrated that it has all the properties listed in Table 1, with the
exception of P6. In the last decade, a variety of kernels was proposed to attenuate the
interference terms without signi"cantly a!ecting the auto-terms of the representation [1].
Choi and Williams [10] "rst proposed a transform using an exponential kernel in (h, q) that
has all the properties listed in Table 1. This transform makes it possible to screen out
e$ciently some of the interfering terms originated by the quadratic nature of the
autocorrelation product, thus facilitating the interpretation of the time}frequency
distribution. Although an appropriate choice of the kernel is fundamental to obtain reliable
results from the identi"cation process, it is worth noting that the method herein proposed
does not rely on a speci"c kernel. A discussion of the way the kernel choice a!ects the
identi"cation of the modal shapes is provided in the section of the paper that presents the
application of the method to synthesized data (see section 6).

For each Cohen class transform, it is possible to de"ne a cross-time}frequency
representation by replacing the instantaneous autocorrelation function of an individual
signal by the instantaneous cross-correlation function, de"ned as

xcf
x,y

(t, q)"xAt#
q
2By*At!

q
2B , (3)

where x and y indicate two input signals. Cross-representations di!er from
auto-time}frequency distributions. For instance, time}frequency representations of the
Cohen class are real (i.e., the imaginary part is null). In fact, the instantaneous
autocorrelation function, as reported in equation (2), is Hermitian and thus its Fourier
transform is real. This is not the case when cross-transformations are considered, since the
instantaneous cross-correlation function is not necessarily Hermitian. On the other hand,
the relationship between the real and imaginary part of a cross-time}frequency
representation is related to the phase between corresponding components of the two
signals, x and y. In addition, when x and y contain common components (i.e., the same
vibration modes) they are located in the ambiguity domain as the terms of an
auto-transformation, whereas components that are not simultaneously present on both the
signals are located in the ambiguity domain as interference terms. This observation implies
that components that are present simultaneously on both the channels are &&transformed'' as
components of an auto-time}frequency representation and thus the properties of Table 1
apply. Also, components that are not simultaneously present on both the signals are "ltered
as interference terms and thus P6 in Table 1 applies. Further details are provided in the
following sections.

3. TIME-FREQUENCY ESTIMATORS FOR MODAL IDENTIFICATION

It is assumed that signals acquired on a structure that can be modelled in a discrete
manner with n d.o.f.s. Let s

i
(t) be the displacement at the ith position, q(k)(t) the displacement

associated with the kth vibration mode, and "nally, let u(k)
i

be a term of the matrix of
normalized eigenvectors, which decouples the motion equations; then

s
i
(t)"+ u(k)

i
q(k) (t) . (4)
k
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The sum in equation (4) is extended to the vibration modes as detected at the ith position. If
the structure, subjected to excitation, is instrumented with simultaneous acquisition
channels according to some of the n d.o.f.s, then the individual modal component of the ith
channel, which appears in the form of an energy peak in the time}frequency domain, can be
written in its complex form as

s(k)
i

(t)"u(k)
i

q(k) (t)"u(k)
i

qJ (k) (t) e j2nf (k) t , (5)

where qJ (k) (t)"A(k) (t) e ju(k) (t) is a baseband signal, having introduced the following quantities,
related to the kth mode: A(k) (t) and u (k) (t), amplitude- and phase-modulating waveforms;
f (k) , natural frequency; u(k)

i
, amplitude of the modal shape at the ith position. If the spectrum

of q(k) (t) is single-sided, the complex form in equation (5) also represents the analytic signal.
The instantaneous autocorrelation function of a modal component s (k)

i
(t) is

acfs(k)
i
(t, q)"u (k)2

i
qJ (k)At#

q
2B ej2nf (k) (t#q/2) qJ (k)*At!

q
2B e!j2nf (k) (t!q/2)

"u (k)2

i
acfqJ (k) (t, q) e j2nf (k)q , (6)

where acfqJ (k) (t, q) indicates the instantaneous autocorrelation function of the amplitude
modulating waveform associated with the kth vibration mode as recorded from the ith
channel. By Fourier transforming the instantaneous autocorrelation function, the
Wigner}Ville transform of s (k)

i
(t) is

=<s (k)
i
(t, f )"u (k)2

i
FqPf MacfqJ (k) (t, q) e j2nf (k)qN"u(k)2

i
=<qJ (k) (t, f )*f

d ( f!f (k) ), (7)

where FqPfM N indicates the Fourier transform from q (time-lag) to f (frequency),=<qJ (k) (t, f )
is the Wigner}Ville transform of the modulating waveform, *f

is the convolution in
frequency, and d ( ) is the unit impulse.

From equation (7) it is apparent that the transform's energy is concentrated around the
modal frequency and the shape of the distribution is determined by the time}frequency
transform of the modulating waveform qJ (k) (t). Since the shape of the modulating waveform
is maintained in the time}frequency domain, the amplitude ratio between two modal
components (except for the sign) can be determined directly from the time}frequency
representations in the following manner:

AR (t)"S
=<s (k)

i
(t, f )

=<s (k)
j
(t, f ) K f"f (k)

"S
u (k)2

i
=<qJ (k) (t, f )*f

d ( f!f (k))

u (k)2

j
=<qJ (k) (t, f )*f

d ( f!f (k)) K f"f (k)

"

u (k)
i

u (k)
j

. (8)

AR (t) is the time}frequency estimator for the amplitude ratio between two modal
components. In the time}frequency domain, the possibility of detecting changes in the
frequency content of the signal makes it possible to interpret correctly the physical
implications of the signal characteristics even in the case of non-stationary excitations, for
instance by distinguishing the components that are constantly present in the signal.

When using a di!erent Cohen class transform, other than the Wigner}Ville transform, the
following expression is obtained:

D
x
(t, f )"C (t, f )*t,f

=<
x
(t, f ) , (9)
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where D
x
(t, f ) indicates a Cohen class representation, C (t, f ) is the kernel of the transform in

the time}frequency domain, and *t,f
is the double convolution in time and frequency.

Therefore, the time}frequency estimator de"ned by equation (8) leads to the ratio between
the amplitude of the modal shape at the ith and jth positions for any Cohen class
representation. In multi-component signals, when interference and auto-terms are
superimposed, the use of a kernel capable of attenuating the interference terms leads to an
increase of the reliability of the amplitude ratio estimation.

Phase di!erences can also be estimated in the time}frequency domain thus leading to
a time-dependent output. The phase di!erence between two channels, for a given decoupled
mode, must remain constant (0 or n for real modes). Auto-time}frequency representations
do not contain information on the phase, but this information may be derived using
cross-time}frequency representations.

Consider, for instance, the following two modal signals, picked up at positions i and j,
whose phase di!erence Du(k)

ij
is assumed to be constant in time:

s(k)
i

(t)"u(k)
i

qJ (k) (t) ej2nf (k) t

s(k)
j

(t)"u(k)
j

qJ (k) (t) ej2nf (k) t#jDu(k)
ij . (10)

Their instantaneous cross-correlation function is

xcfs (k)
i
,s (k)

j
(t, q)"u(k)

i
qJ (k)At#

q
2B ej2nf (k) (t#q/2) u(k)

j
qJ (k)*At!

q
2B ej2nf (k) (t!q/2) e!jDu (k)

ij

"u (k)
i

u (k)
j

acfqJ (k) (t, q) e j2nf (k)qe!jDu (k)
ij (11)

and hence the cross-Wigner}Ville representation (X=<) can be written as:

X=<s (k)
i
, s (k)

j
(t, f )"u(k)

i
u (k)
j

e!jDu (k)
ijFqPf MacfqJ (k) (t, q) e j2nf (k)qN

"u (k)
i

u (k)
j
=<qJ (k) (t, f!f (k)) e!jDu(k)

ij . (12)

This equation shows that it is possible to de"ne the estimator for the phase di!erence
between two modal components as

PH (t)"phase MX=<s (k)
i
, s (k)

j
(t, f )NDf"f (k)"Du (k)

ij
. (13)

As for the amplitude ratio estimator de"ned by equation (8), it can be shown that the
general expression in equation (13) is valid for any real distribution belonging to the Cohen
class.

4. MODAL PARAMETER IDENTIFICATION

The estimators de"ned in the previous section retain the dependence on time, and hence
make it possible to establish a posteriori, i.e., at the end of the process, whether a given
frequency value may or may not be a vibration mode of the structure. In fact, when one
analyses linear time-invariant systems, decoupled modal signals are characterized by
amplitude and phase relationships that are not time-dependent and therefore their modal
shape is constant over time.

The identi"cation of modal frequencies therefore reduces to a search for the particular
values f"f (k) for which the estimators remain constant with respect to the time variable, in
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general by resorting to multiple criteria techniques [11, 12]. Having identi"ed the
frequencies, the estimators supply directly the temporal evolution of the amplitude and
phase ratios, i.e., the modal shapes.

Multi-component signals are now considered. In this case, the bi-dimensional estimators
assume the following form, valid for any transforms D (t, f ) of the Cohen class:

AR (t, f )"S
D

si
(t, f )

D
sj
(t, f )

"S
C (t, f )*t,f

=<
si
(t, f )

C (t, f )*t,f
=<

sj
(t, f )

, (14a)

PH(t, f )"phaseMD
si, sj

(t, f )N"phaseMC (t, f ) *t,f
X=<

si,sj
(t, f )N . (14b)

In the general case of cross-correlations between channels, a bi-linear distribution will
consist of auto- and cross-terms; therefore the cross-time}frequency distribution

D
sisj

(t, f )"P
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P

`=

~=
P

`=

~=

s
i
(t@#q/2)s*

j
(t@!q/2) g (h, q) e!j2nh(t@!t) e!j2nfq dhdt@dq (15)

may be expanded as follows

D
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+
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i

u(h)
j

Dq(k)q (h) (t, f )

"+
k

u(k)
i

u(k)
j

Dq(k) (t, f )# +
kOh

u(k)
i

u(h)
j

Dq(k)q(h) (t, f ). (16)

The cross-terms may be "ltered using an appropriate kernel. This operation can be
viewed clearly by referring to the ambiguity function domain, which is dual with respect to
the time}frequency domain [1]. In this domain, the cross-terms are displaced from the axes
as the interference terms in an auto-transformation, as discussed in the following subsection.

4.1. INTERFERENCE TERM FILTERING

The time}frequency distribution formulated in equation (15) has a dual image in the
ambiguity function domain [1, 2]. In fact, for two components q(k) (t) and q(h) (t),

M
q(k)q(h)

(h, q)"g (h, q)AF
q(k)q(h)

(h, q), (17)

where

AF
q(k)q(h)

(h, q)"P
=

~=

q(k) (t#q/2) q(h)* (t!q/2) e!j2nht dt, (18)

where M
q(k)q(h)

(h, q) is the characteristic function and AF
q(k)q(h)

(h, q) the ambiguity (k"h) or
cross-ambiguity (kOh) function.

For two displacement signals the characteristic function can be written as follows:

M
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u(k)
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u(k)
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M
q(k)q(k)

(h, q)# +
kOh

+ u(k)
i
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j

M
q(k)q(h)

(h, q) . (19)
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The corresponding instantaneous cross-correlation function is:

R
q(k)q(h)

(t, q)"A(k) (t#q/2)A(h)* (t!q/2) e j2n (( f (k)#f (h) )/2)q e j2n ( f (k)!f (h)) t

e j(/ (k) (t#q/2)!/ (h) (t!q/2)) . (20)

From equation (20) it can be seen that, in the ambiguity function domain, the modal
components ( f (k)"f (h)) fall on the q-axis (h"0), while the cross-components ( f (k)Of (h))
fall at a distance f (k)!f (h) from the q-axis. This makes apparent why the use of a kernel that
rejects the terms displaced from the time-lag axis leads to the selection of the components
common to both channels [10].

4.2. MODAL FREQUENCY LOCALIZATION

It should be observed that, once the cross-terms have been "ltered, a potential source of
error in the identi"cation of the vibration modes is a possible close coupling among
di!erent components. The components in the frequency domain are uncoupled as long as
the phase and frequency modulation is negligible, thus the ratio between the time}frequency
representations, as estimated at the modal frequencies, will approximate to the square of the
modal amplitude ratio. In the time}frequency domain, a single component is uncoupled
when it produces a separate component in the time}frequency plane, which develops
around its instantaneous frequency. In comparison with classical frequency analysis,
time}frequency cross-transforms between channels are able to "lter products among
di!erent components that, although closely coupled in frequency, are uncorrelated in time
(e.g., #exural and torsional modes of bridges) [4].

It can be concluded that the reliability of the proposed estimator and the identi"ability
of the structure investigated are related to single-component separability in the
time-frequency plane, i.e., both to close coupling of modal frequency and to excitation type.
The capability of the cross-time}frequency transform of separating the signal components is
improved by using kernels that are highly selective in the ambiguity function domain. Using
highly selective kernels, therefore, allows the amplitude ratio and phase di!erence
estimators to be approximated for each modal frequency even for multi-component signals:

AR (t, f )D
f/f (k)"S

D
si
(t, f )

D
sj
(t, f ) K

f/f (k)

+S
+

k
u (k)2

i
DqJ (k) (t, f!f (k))

+
k
u (k)2

i
DqJ (k) (t, f!f (k))

"

u (k)
i

u (k)
j

, (21a)

PH (t, f )Df"f (k)"phase MDs
i
,s

j
(t, f )NDf"f (k)

+phaseG+
k

u (k)
i

u (k)
j

DqJ (k) (t, f!f (k))H K f"f (k)

"Du (k)
ij

. (21b)

In frequency intervals where a single-modal component is predominant, the estimators
tend to lead to a constant value in time. As this property is progressively more closely
satis"ed up to an actual constant value at the modal frequencies, the latter can be identi"ed
by searching the minima of the following functions:

P
T

0

[AR (t, f )!AR]2 dt, (22a)

P
T

0

[PH (t, f )!PH]2dt, (22b)
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where ¹ is the length of the analyzed signal and AR and PH indicate the mean value of the
amplitude ratio and phase di!erence respectively.

5. REFINEMENT OF THE ESTIMATION

Once the modal frequencies have been identi"ed, a more accurate method may be used to
re"ne the modal shape evaluation.

A synthetic signal z(k) (t) can be generated as a sinusoid (i.e., the corresponding analytic
signal) with frequency equal to a speci"c modal frequency and with phase u

z
:

z(k) (t)"Kej2nf (k) t#ju
z . (23)

The cross-Wigner}Ville representation (X=<) of this synthetic signal and the data
recorded at the ith position can be written as

X=<
siz(k)

(t, f )"+
h

u(h)
i

X=<
q(h)z(k)

(t, f )"u(k)
i

X=<
q(k)z(k)

(t, f )# +
hOk

u(h)
i

X=<
q(h)z(k)

(t, f ) , (24)

where

X=<
q(k)z(k)

(t, f )"Ke!ju
zFqPf GqJ (k)At#

q
2BH*hd (h!f (k)),

X=<
q(h)z(k)

(t, f )"Ke!ju
ze j2n ( f (h)!f (k) ) FtPfGqJ (h)At#

q
2BH *hdAh!

f (h)#f (k)

2 B .

(25)

The corresponding ambiguity functions are, respectively,

AF
q(k)z(k)

(h, q)"F~1
t?hMxcf

q(k)z(k)
(t, q)N"Ke!ju

zej2nf (k)qF~1
t?h GqJ (k)At#

q
2BH ,

AF
q(k)z(k)

(h, q)"F~1
t?hMxcf

q(k)z(k)
(t, q)N

"Ke!ju
ze j2n( ( f (h)#f (k))/2) qF~1

t?h GqJ (h)At#
q
2BH*d(h!( f (h)!f (k))). (26)

The latter equations show that, in the ambiguity domain, the cross-terms (kOh) are
located away from the h-axis. The choice of selective kernels, which retain only the
components near the h-axis, makes it possible to attenuate the interference terms and
emphasize the modal component that it is intended to identify.

When a distribution D (t, f ) is considered, whose kernel e$ciently attenuates the
interference terms and it is used to derive the cross-time}frequency representation of the
synthesized signal and the accelerometer signal at the ith position, then:

D
siz(k)

(t, f )+Ku(k)
i

D
q(k)z(k)

(t, f ) . (27)
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When this procedure is repeated for the signals at the ith and jth position, the modal shape
estimators can be taken as

AR (t, f ) D f"f (k)"K
D

siz(k)
(t, f )

D
sjz(k)

(t, f ) KK f"f (k)

, (28a)

PH (t, f ) D f"f (k)"phaseG
D

siz(k)
(t, f )

D
sjz(k)

(t, f )HK f"f (k)

. (28b)

This procedure is advantageous over that de"ned by equations (21), since the modal
parameters are derived from the cross-time}frequency representation between a
multi-component signal and a monocomponent one. Consequently, in equations (28) the
number and location of cross-terms (i.e., interference terms) is less critical when compared
with the cross-time}frequency representation of two multi-component signals. This
observation is discussed in the following section, where an example is proposed that
illustrates the advantages of the re"nement method proposed in this section.

6. SAMPLE APPLICATION

In the following, a sample application of the procedure de"ned in the previous sections to
data synthesized using a model of a three-storey shear-type frame is presented. Figure 1
summarizes the characteristics of the simulated structure. The outputs corresponding to
di!erent storeys of the simulated building (Figure 1, right side) were obtained for di!erent
input signals. Two excitations were used, namely a sine sweep from 0)1 to 3 Hz and a seismic
excitation (an accelerometer measurement from the Loma Prieta earthquake 1989, Natural
Science Building at UC Santa Cruz, E/W direction, peak ground acceleration"0)4248g).
Figure 1. Case study. On the left side of the "gure, the tables summarize the system's characteristics. On the
right side, the plot shows schematically the simulated structure.



Figure 2. Inputs of the linear system, i.e., excitation applied at the support of the simulated structure. (a) Sine
sweep ranging from 0)1 Hz to 3 Hz. (b) Data collected during the Loma Prieta earthquake 1989, Natural Science
Building at UC Santa Cruz, E/W direction, PGA"0)4248g.

Figure 3. Simulated non-linearity and identi"cation of the modal frequencies. Plot (a) shows the quadratic-
softening type characteristic of the simulated structure. Plot (b) represents the standard deviation of the phase
di!erence computed for the second storey of the simulated structure with respect to the "rst storey as a function of
frequency. The minima identi"ed the pseudo-modal frequencies.
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Both the inputs are shown in Figure 2. Di!erent inputs were used to investigate how the
method performs under di!erent types of non-stationarity of the input signal. It is worth
noting that knowledge of the excitation is not necessary to identify the structure, since the
method introduced in this paper utilizes only the response signals, namely the outputs
recorded at di!erent storeys.

In addition to the linear case, the application of this approach to the simulated structure
when modi"ed by introducing a quadratic-softening-type non-linearity according to the
characteristic illustrated in Figure 3(a) was also investigated. In the latter case, the response
of the non-linear system to the sine-sweep excitation was studied to assess the e!ect of
&&mild'' non-linearities on the identi"cation procedure. In all the simulated cases, the
estimation was carried out according to equations (21) and (28) and the modal frequencies
were computed by detecting the occurrence of minima in the standard deviation of the
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phase di!erence (equation (22b)). Although the proposed approach does not rely on
a speci"c kernel belonging to the Cohen class of distributions, the reliability of the
estimation procedure depends on the choice of the kernel of the transform. An optimal
kernel for the identi"cation procedure must be capable of e$ciently attenuating the
interference terms, since their attenuation implies a decrease of the error that a!ects the
amplitude ratio and phase di!erence estimates. In the proposed sample application, the
attenuation of the interference terms did not result to be a particularly critical point.
Satisfactory results were obtained using a Choi}Williams transform [10] with p"0)5.
Possible criteria to choose the kernel of the transform are discussed in a following
subsection.

6.1. MODAL FREQUENCY ESTIMATION

The cases examined are: (1) linear frame, sine sweep excitation at the support; (2) linear
frame, seismic excitation at the support; and (3) frame with quadratic-softening-type
non-linearity, sine-sweep excitation at the support. Table 2 summarizes the modal
frequencies estimated for the three investigated cases and allows the comparison with the
theoretical values.

The modal frequencies reported in Table 2 were estimated from the lowest three minima
in the plots representing the standard deviation of the phase di!erence for di!erent channels
as illustrated in Figures 4(a) and 4(b) and Figure 3(b). These plots were all obtained using
Choi}Williams distributions with p"0)5 [10] to derive the amplitude ratios and phase
di!erences according to equations (21).

Figure 3 refers to the case when a linear system with sine-sweep input (Figure 4(a) and
seismic input (Figure 4(b)) respectively were simulated. In both cases, the estimated modal
frequencies are extremely close to the theoretical ones. However, it is apparent that the
variability of the plot in the case corresponding to a seismic input is signi"cantly higher
than that observed when a sine-sweep excitation was applied to the model. Such di!erent
behaviour is likely related to the di!erent type of non-stationarity of the input in the two
simulated cases.

Figure 3(b) shows that similar modal frequencies (i.e., pseudo-modal frequencies) are
identi"ed when analyzing the simulated non-linear structure. This suggests that the
proposed method is capable of performing the identi"cation of vibration components in
presence of both a non-stationary input as well as &&mild'' non-linearities. Also, the
variability of the curve obtained when the sine sweep was applied to the non-linear frame
was higher than that observed when the same input was applied to the linear frame. This
TABLE 2

¹heoretical and identi,ed modal frequencies obtained by applying the proposed method under
di+erent inputs (sine sweep and earthquake) and constitutive laws (linear and non-linear)

Modal frequency Constitutive law Excitation 1st (Hz) 2nd (Hz) 3rd (Hz)

Theoretical Linear 0)445 1)247 1)802
Identi"ed Linear Sine sweep 0)45 1)25 1)80
Identi"ed Linear Earthquake 0)45 1)25 1)78
Identi"ed Non-linear (Figure 3(a)) Sine sweep 0)42s 1)15s 1)76s

sPseudo-modal frequency.



Figure 4. Standard deviation of the phase di!erence between the channel corresponding to the second storey of
the simulated structure and the reference channel ("rst storey) as a function of frequency. Plot (a) corresponds to
the case when a linear system was simulated and a sine-sweep excitation was used as input to the structure. Plot (b)
is relative to the case of seismic excitation. The three minima (on both the plots) identify the modal frequencies.

Figure 5. Evolution through time of modal amplitude ratios (a) and modal phase di!erences (b), as determined
with respect to the reference channel ("rst storey) for the second and third storeys. Data are relative to the second
mode. The light and dark lines indicate the amplitude ratio and phase di!erence computed for the second storey
and third storey respectively. Plot (c) shows the time evolution of the modal shape as reconstructed using
amplitude ratios and phase di!erences. Data were obtained when simulating a linear system with sine-sweep
excitation and using the method summarized by equations (21).
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suggests that &&mild'' non-linearities increase the variability of the parameter utilized to
identify the modal frequencies as already observed for di!erent type of non-stationarity of
the input.

Once the modal frequencies are identi"ed, amplitude ratios and phase di!erences can be
used to derive the modal shapes associated with the di!erent modal frequencies, i.e., their
evolution in time can be estimated. The results for the second-modal shape are illustrated in
Figure 5. Amplitude ratios and phase di!erences were computed taking the channel
corresponding to the "rst storey as a reference. It is worth noting that the modal shape is
expected to be constant in time unless in presence of non-linear behaviour, but this is not
the case when one considers the amplitude ratios reported in Figure 5(a). In this plot, the
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spurious oscillations which a!ect the estimated modal parameters may be related to
a non-optimal choice of the kernel of the transform, as will be discussed in the following
section.

6.2. MODAL SHAPE IDENTIFICATION

Once the modal frequencies are identi"ed, the method presented in section 5 to re"ne the
estimation of the modal shapes may be used. For each identi"ed modal frequency
a sinusoidal waveform with frequency equal to the modal frequency is generated and
equations (28) are used.

Figure 6 shows the amplitude ratios and phase di!erences for the second modal
frequency derived by means of the procedure proposed in section 5. The reference channel is
the accelerometer signal corresponding to the "rst storey. If a comparison is made between
the estimates obtained by equations (21) (Figure 5) and the results derived using equations
(28) (Figure 6), it is apparent that the modal shape estimated by the latter technique is
considerably more reliable. The same technique was used for all the three identi"ed modal
frequencies. The estimated average modal shapes are represented in Figure 7 for all the
three modal frequencies. The estimates are extremely close to the theoretical modal shapes
shown in Table 3, where the reconstructed eigenvectors associated with the simulated
structure are compared with the theoretical values.

6.3. CHOICE OF THE KERNEL

In the sample application presented in the previous section, the choice of the kernel of the
time}frequency transform was not particularly critical. In actual applications to real data,
the kernel choice may dramatically a!ect the estimation procedure. The capability of the
kernel of the transform to attenuate the interference terms is expected to be an important
factor when interference terms and autocomponents are superimposed. Problems may arise,
for instance, in complex mechanical systems and, in general, when modal frequencies are
spaced too closely. When the signal characteristics are totally unknown, adaptive methods
Figure 6. Modal amplitude ratios (a), modal phase di!erences (b), and timeevolution of the modal shape (c) as in
Figure 3. In this case, however, the modal parameters are computed using the re"nement method illustrated in
Section 5 and summarized by equations (28).



Figure. 7. Estimated modal shapes. The three lines, i.e., (a) continuous line, (b) dotted line, and (c) dashed line
show the "rst, second, and third modal shape respectively.

TABLE 3

¹heoretical and estimated eigenvectors for the three identi,ed modal frequencies

Estimated modal frequency
(Hz) Theoretical eigenvector Estimated eigenvector

0)45 [0)3184 0)5970 0)7363] [0)3361 0)6032 0)7233]
1)25 [0)7363 0)3184 !0)5970] [0)7295 0)3320 !0)5980]
1)80 [0)5970 !0)7363 0)3184] [0)5782 !0)7500 0)3211]
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[13}15] as well as design procedures based on the characteristics of the ambiguity function
of the analyzed signal [16}19] could be useful. These approaches may o!er a kernel
geometry more suitable than the Choi}Williams kernel to reject components related to the
cross-products among the vibration modes. In fact, such terms are parallel to the time-lag
axis in the ambiguity domain and thus the Choi}Williams kernel might fail in attenuating
them su$ciently. The referenced approaches may also provide a kernel with #atter
passband and narrower transition regions in the ambiguity domain than the
Choi}Williams. It must be emphasized, however, that when one uses the re"nement
approach proposed in section 5, possible drawbacks on the estimation of the modal shape
related to the interference terms are dramatically reduced. In fact, the cross-correlation with
a single-frequency component, as performed when a sinusoidal waveform is synthezised,
implies that there will be no spurious terms centred on the frequency that corresponds to
the analyzed modal component.

7. CONCLUSIONS

This paper proposes a new identi"cation method, based on a number of estimators
de"ned in the time}frequency domain. This technique applies to structures and systems in
normal serviceability conditions, under unknown excitation.

Numerical tests led to satisfactory results, providing support for the theoretical
considerations. The results show that it is possible to separate the modal frequencies from
typical excitation components. The proposed method appears to o!er a higher level of
resolution compared to traditional techniques. Furthermore, the method was shown to be
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robust to the presence of markedly non-stationary excitation, e.g., seismic input, and to
slightly non-linear conditions.

In this paper, it was further shown that the cross-correlation-based estimators are more
e!ective than those based on the autocorrelation, mainly because of the intrinsic "ltering of
the noise components provided by cross-correlation-based methods. Based on this
observation, it is proposed to re"ne the modal shape estimates using a procedure that solely
relies on cross-time}frequency transforms.

Although the application to real structures is expected to be more challenging than the
application to simulated data (due to measurement noise, non-linearity, non-classical
damping etc.), the proposed method builds upon an earlier procedure [4] that was shown to
be e!ective in applications to real structures (bridges and buildings). This earlier
methodology made use of modal "lters that could increase the estimation error a!ecting the
reconstructed modal shapes. The estimators proposed here are more reliable since they
avoid possible distortions of the signal related to the "ltering procedure. The results suggest
that this novel identi"cation method leads to great e!ectiveness and facilitates the
automation of the identi"cation process. Further studies will be devoted to the de"nition of
time}frequency estimators for structural damping identi"cation.
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